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ABSTRACT

For a positive constant X we denote by K(X) - {f(z)} the class of
function f(z) which are regular and univalent in Izi < A and map this

circle on a convex domain. In 1928 G. Szeg5 [3] proved the

Theorem 1. If f(z) - I cVz e K(1), then all its sections
0

n 1

Sn(z) - cz e x( ) for n - 1,2,...
0

An evident consequence is %
S.

Corollary 1. Since the geometric series

f0(z) - zv e KeIl
0

we have
n "

ZV  
l , (n " 1,2,.... :

0

and therefore, on replacing z bX z/4, we have

n 4
1 V0 -U z e K(1) for n - 1,2,...

0 4

In the present caper we prove directly Corollary 1, and derive from it SzegB's
Theorem 1. This is done by appealing to Theorem 2 which was conjectured by
Polya and Schoenberg [1] in 1958, but only proved in 1973 by St. Ruscheweyh
and T. Sheil-Small (2]. %
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SIGNIFICANCE AND EXPLANATION

There is a fine interplay between two fundamental notions of geometry:

Convexity and Conformal Mapping. The subject belongs to Geometric Function

Theory. In 1928 Gabor Szeg5 showed that if a power series converges in the

unit circle IzI < 1 and maps it onto a convex domain, then all its finite

sections map the circle Izi < 4 onto convex domains. The present paper

shows that Szeg8's theorem reduces to a study of the finite sections of the

geometric series | 2 , , . ,
7: -, .....I

/'1 21 +i~ + +. .

Z _1

The main tool is a result conjectured in 1958 by Polya and Schoenberg, but

only established in 1973 by St. Ruscheweyh and T. Shell-Small.
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ON A THEOREM OF SZEGO ON UNIVALENT CONVEX MAPS OF THE UNIT CIRCLE

I. J. Schoenberg

1. INTRODUCTION. There is an interesting interplay between two fundamental notions of

geometry: Convexity and Conformal Mapping. The subject belongs to Geometric Function

Theory. We use the following notation: If r > 0, we denote K(r) = {f(x)} the class of

functions f(z) which are univalent in the circle Jzi < r, and map It onto a convex

domain.

In 1958 Polya and Schoenberg conjectured that for r = 1 the class K(1) form a

semi-group with respect to Hadamard multiplication of power series. This was established

in 1973 by St. Ruscheweyh and T. Sheil-Small in [2] by the following

Theorem 1. (Ruscheweyh and Sheil-Small). If

a V z ze(1) and bzV e Km

then

0

Before we pass to the work of Szeg5, let us use Theorem 1 to establish a simple and

well known

Proposition. If

0
11.1) f(z) " a z e Kel)

0
and 0 < ) < 1, then

V
(1.2) f(z) = az e K1)

0

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Proo__f: We start from the geometric series

(1.3) f0(z) =.z v  e-!- Km11

1 -- 4

o* z

because it aps ozf < I onto the halt-plane Re z > . However, w fols) 1/0 z)

clearly maps 1zl < A onto a circle, and so

z
v 

e K(A) %1

0

Replacing z by Az, we obtain that

(1.4) A'z e K(1)

0

However, from (1.1) and (1.4), by Theorem 1 we obtain

v 
v

0

or, replacing Az by z, we have

a Vz e K()
0

which is the desired conclusion (1.2). i

Remark. Our derivation of the conclusion (1.2) from the special case of the geometric

series (1.3) justifies Polya's statement that within the class K(1) the geometric series

(1.3) "sets the fashion" (in German: "tonangebend").

Szeq' s question: If

(1.5) f(z) = X cvzv e x(i)
0

what can we say about its sections

n

Sn(z) = c z ?
v 0

In 1928 G. Szeg6 [3, Satz II', page 204] established

-2-
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Theorem 2 (Szegd5). If (1.5) holds, then

(1.6) Sn(z) c c~z' e K(1) for n =1,2 ..

V 4

%-0

Using Theorem 1 we will show in 12 that we can reduce Theorem 2 to the quebtion

concerning the section of the geometric series

f(z) + z + ... + n +

"0 < -A< -Using ~~~Theorem 1 e w e al howstant s2tatsefcing rdc hoe oteqeto

If (1.5) holds, then

n
(1.7) Sn(z) -I cVz VeK(A) for all n >m(X)

0

where

(1.8) m(A) is the least integer such that (1.7) holds.

Evidently

(1.9) mM) if X A ,-4

by Theorem 2. It is equally evident that

(1.10) A 1 
< 

X2 implies that m( 1 1 _ m(A 2)

for if Sn(z) e K(x 2), then also Sn (z) e K().,
2 n 1

The main difficulty in Theorem 3 is an explicit determination of m(A), if A > ,

and we will do that for the value

(1.11) A -

3

only, and find that

(1.12) m ) % •.*

We state this result as

-3-
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Theorem 4. If

Vp

,. (1.13 f(z) 
=  cV z e K(1)
0

th en

n V.

1.14) Sn( ") c z ! K() for n ; 4 ,
n 0

but not necessarily for n - 2 or 3.

In establishing Theorems 3 and 4 1 greatfully acknowledge the help of Fred W. Sauer,

of the Computing Staff of the Mathematics Research Center.
._

2. THLE NEW APPROACH TO SZEGO'S THEOREM 2. Since evidently

DV

(2.1) -fz Z e KM1l
* 0

.

we conclude by Szego's Theorem 2 that

n

(2.2) z e K i for all n =1,2,.

.4< 0

Replacing z by z/4 we may restate (2.2) as

Corollary 1. We have

'J n

a(0)

(2.3) (Z) e K) for n " 1,2,...
n04

%" The new approach to Theorem 1 is to establish Corollary 1 directly. If now

(2.4) f(z) " cz e K(1)

is an arbitrary element of K(M) we argue as follows: Applying Theorem 1 to (2.3) and

-4-
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b.

(2.4) we conclude that

S2 cz ex(i)
v-O 4

and therefore

n

ScVZ e K(-) for n 1,2,...(2.5) V 4

N..

which is the conclusion (1.6) of Theorem 2.

Szeg5's theorem is therefore made to depend on the proof that all sections of the

geometric series

V
(2.6) f(z) , (IzI 4)

are in M(1).

3. A DIRECT PROOF OF COROLLARY 1. We begin with

Lama 1. All sections

(3.1) fn(z) 3 (n 1,2...
0 4

are univalent in the closed unit circle U (Izi .)

Proof: We are to show that

(3.2) IzI 1, IZ21 S 1, zI * z2  imply that fn(zl * f(z2 )

Observe that

K n((33 fnli) 1 L.~' " V Z V -

1i 4 +  2 + I 2+ Z2 3 n-1+ n-2 + +Z n-11

Zl 2 4 z + 1 + 1 1 2 2
4 4 42 4

-5-
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However, by (3.2),

n-I n-i
.IEl I 2Z+ + + n 7 3n +4

4 4n-I - 4 4 n-I 9 n-1

the last equality being easily obtained by summation, or by complete induction. The last

member being < 1. we obtain from (3.3) that

__ _ 2 53.+4 22 22 3n+'
Ifn(Zl) - fn(Z2)1 > 12 -21 l - - )  I 4 

1 2 + 3n + I > 0

9.4 9.4

and (3.2) is established.

Lemma I shows that the polynomial (3.1) maps the circle IzI I onto a closed Jordan

curve Cn.  Separating real and imaginary parts by

(3.4) fnleit) - Xnlt) + iyn(t)

we obtain for Cn the parametric representation

(3.5) Cn : x - Xn(t), y - Yn(t), (0 < t _ 2w) . ,,

Wishing to study its curvature

(3.6) 
. - x'y" - y'x"

R (x,2 + y 
2
)
3
/
2

we first establish

Lemma 2. Defining

(3.7) n(t) 
=

q(tly;(t) - Yn(t)xlt)

we have

(3.8) Tn(t) > 0 for -W < t < w, and n 1,2,...

Proof: From (3.1) and (3.4) we have

n n-con at sna

(3.9) Xn(t) 1 + a Ct) a
0.1 4 a1-i

and (3.7) becomes

I .4)"

W, R % %-6-
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n C ,2

-1I -4asin at - 0 coosOt

T It) --' n x n n .
Yn n 4-*a cos at - 0 B sin Ot

;.1 1-

By splitting the columns we rewrite the determinant as a sum of n2  determinants obtaining

n: n 47-O'¢12(Sn" "

T (t) - at sin At + cos at cos St)n ~ I :

and finally

(3.10) T t) - coa - )t
n 00a,-1 4a

+ 0

which is a cosine polynomial of order n - 1.

Establishing the non-negativity of a cosine polynomial is in general a difficult

problem. Fortunately, in our case it is easy due to the structure of the infinite matrix

(3.11) I
a+0

of the coefficients of all (3.10). For instance, we obtain T3 (t) as the sun of the

elements of the 3 x 3 matrix (3.11) provided with appropriate cosine factorst

1.12 1.22 1.32
2 + --- cos t + cos 2t

4 4 4

2.1 22.222.2(t) + - c os t + - + c os t
343 4445

3 .12 3.2,2 3.3-- coo 2t -- o t+7

Since Tnlt) is a cosine polynomial, we may restrict t to 0 < t < V.

4.

-7-
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For n - 2 (3.8) presents no difficulty since

(3.13) T 2 (t) - 3. (1 + cos t)32

which is non-negative. I owe to Fred Sauer the positivity of T3 (t), T4 (t) and T5 (t)
who provided the following (positive) minima

min T3 (t) = .01309
t

min T4 (t) - .01221
t

(3.14) min T5 (t) - .01600

I claim that the last result (3.14) allows us to show that

(3.15) min Tn(t) > 0 for all n > 6
t

but this requires some elementary Algebraic Analysis.

The sum of all elements of the infinite matrix (3.11) is

2 *2 ..
a. (3.16) CE 2~ - 2 -

aiO-I 40+B 1 4 0-1 4

From this sum we subtract the sum of the elements of the principal n x n minor of (3.11),

and define the new sequence

(3.17) N B a n 2

1 4 1 4 1 4 14S

n V
By iteration of z(d/dz) applied to (z/4) we obtain the identities

(1 v 4.4
n 

_ 3n 4 n 20.4
n  

9n
2  

24n -20

1 4 9.4 1 4 27 .4n
a.?

and letting n * we obtain

%%

.1

%i
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q * - - -.. . . . . . . - - sv .

a 2

" 1~~~3.19) -
= 

, =2-
I 1 4 2

Now the sequence (3.17) may he explicitly written as

4 20 4.4
n 

- 3n - 4 20.4 n - 92 - 24n - 20(3.20) N . . . . .. -0 .

9.4 27.4

which yield the numerical values

N4 - .0216009195

' and

* (3.21) Ns - .0073673303 < .0074

, I claim that this last inequality completes our proof of Lemma 2: Indeed, from (3.21)

and the definition (3.17) of N5  we conclude that all Tn(t) are positive for all

n > 5, for in view of the relations (3.14) and (3.21) w have for n > 5 and all real t

T n(t) > T5 (t) - NS > min T5 (t) - 1 5 > .0160 - .0074 - .0086 > 0
t

4. PROOF OF THEOREM 3. Our previous discussion makes it clear that it suffices to

consider the geometric series

1--

(4.1) f(z) V z V (z <
0 1 - Asz ( ,-11A ,

and prove

Lemma 3. For its partial sums we have

n

(4.2) Sn(z) z- e Az S K(1) for all n > M(A)
0

where

' (4.3) m(A) is the least integer such that (4.2) holds.

-9-
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Proof of lemma 3. Notice that

(4.4) fleit) -x(t) + iy(t)

traces out a circle C having the interval of reals (1/(l + X), 1/(I - A)] as diameter

and therefore the radius

(4.5) II 2

" ,,"Setting

(4.6) Sn(eit) - xn(t) + iYn(t)

and observing that tzj - I is well within the circle of convergence of (4.1), it should

be clear that the real periodic functions

Xn(t), Yn(t), x(t), y(t)

are regular in a neighborhood of the real t-axis. Also that yn(t) and yn(t), as well

as their derivatives, converge uniformly to the corresponding derivatives of x(t) and

y(t), respectively. It follows that the closed curve Cn (xn(t), Ynlt)) converges to

the circle C and that its curvature

Xn(tlYn(t )- yn(t )x,-t)

(n)2 + (t)2)3/2

(x'(t)2 + Y

converges uniformly in t, as n + , to the curvature 1/R of C. This establishes

Lamma 3.

The determination of m(X), satisfying (4.3), is difficult and will be solved for

S=1/3 only.

1

5. THE CASE v PROOF OF THEOREM 4. As an analogue of Lemma I we should prove that

the image of Izi = I by

(5.1) fn(z) = z (n = 1,2,...

-10-
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are all simple closed curves. However, our simple proof of Lemma I does not generalize.

Rather we consider

n n
(5.2) w fnlzl I V 1 v z 1 - (z/3)

.3 1 (z/3)

and show that it maps z - e it into a curve which is star-shaped with respect to the

origin. This requires two facts: 10. That as t varies from -w to +, the argument

of the function (5.2) increases by 21. 20. That we have

(5.3) m(/ w) ) 0 for all t

However, we omit the tedious calculations.

We rather pass to considering the curvature of the curvei here matters are very close
41 1 4

to those of 13 and obtained from them by replacing by j. We shall also use the same

notations.

Setting

(5.4) fn(eit) " Xn(t) + iYn(t)

we have as an analogue of Lemma 2 the

Lemma 3. Defining

(5.5) Tn(t) - x(t)ynlt) - yn(t)x;(t)

we have

(5.6) Tn (t) > 0 for -1 < t w r and n 4,

but not for n 2 and n - 3.

Proof: For the analoques of (3.10) and (3.17) we find

(5.7) T (t) - a-o- cosas -O)t
r..?, zC;B- 3cz l

L and

(5.8) Nn a--)f 13 13 13 13

and explicitly

"-11- ".

.'-



'11

(59)9 (3n - 2n - 3)3n1 - 2 3n 3-nn -3-3
)

n  3n.4 3n.2

Rounding off Fred Sauer's values to six decimal places, we have

min T2 (t) - -.012346
t

min T3 (t) - -.002057
t

min T4 (t) - .004268
t

min T5 (t) - .013733
t

min T6 (t) - .014480, N6 - .036836

(5.10) min T7 (t) - .017663, N7 - .015400

The first two minima being negative shows that the curves C2 - (x2 (t),Y 2 (t)) and

C3 - (x3 (t),Y 3 (t)) are not convex. However, from (5.10) we can conclude that (5.6)

holds: From the above data we see that T4 (z), T5 (t), T6 (t), and T7 (t) are everywhere

positive. Now (5.10) show that if n > 7 then

Tn(t) I T7(t) - N7 > min T7 (t) - N7 > .0176 - .0155 = .0021 > 0
t

Thus Tn(t) > 0 for all t and n - 4,5,..., proving Theorem 4.

.d..-

-12-
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ABSTRACT (cont.)

Theorem 1. If f(z) - cv z e K(1), then all its sections

n

• ", Sn(Z) - cvz eK 1 for n- 1,2,...
',. 0

An evident consequence is

Corollary 1. Since the geometric series

fo(z) = z e K(1)
.0

we have

zn K1) (n = 1,2,....
0

and therefore, on replacing z by z/4 , we have

z V e K(M) for n - 1,2,...

0 4V

In the present paper we prove directly Corollary 1, and derive from it Szeg6's
Theorem 1. This is done by appealing to Theorem 2 which was conjectured by
Polya and Schoenberg I1] in 1958, but only proved in 1973 by St. Ruscheweyh
and T. Sheil-Small [2].
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